| Package | Description |
|---|---|
| marytts.machinelearning |
Machine learning classes for K-Means clustering, Gaussian Mixture
Models, and manual data generation for testing purposes.
|
| marytts.signalproc.adaptation.gmm.jointgmm |
Joint source-target Gaussian Mixture Model based voice conversion algorithms.
|
| Modifier and Type | Method and Description |
|---|---|
GMM |
GMMTrainer.expectationMaximization(double[][] x,
GMM initialGmm,
int emMinimumIterations,
int emMaximumIterations,
boolean isUpdateCovariances,
double tinyLogLikelihoodChangePercent,
double minimumCovarianceAllowed) |
GMM |
GMMTrainer.train(double[][] x,
GMMTrainerParams gmmParams) |
| Modifier and Type | Method and Description |
|---|---|
GMM |
GMMTrainer.expectationMaximization(double[][] x,
GMM initialGmm,
int emMinimumIterations,
int emMaximumIterations,
boolean isUpdateCovariances,
double tinyLogLikelihoodChangePercent,
double minimumCovarianceAllowed) |
| Constructor and Description |
|---|
GMM(GMM existing) |
GmmDiscretizer(GMM model,
boolean extraZeroClass)
This constructs a
Discretizer using the specified mixture model. |
| Modifier and Type | Field and Description |
|---|---|
GMM |
JointGMM.covarianceTerms |
GMM |
JointGMM.source |
GMM |
JointGMM.targetMeans |
| Constructor and Description |
|---|
JointGMM(GMM gmm,
FeatureFileHeader featureParamsIn) |
Copyright © 2000–2016 DFKI GmbH. All rights reserved.